

Update on Lake

Florian Mendel, Christian Rechberger, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK) - <u>Krypto Group</u>

Faculty of Computer Science Graz University of Technology

Observation

The Boolean function f used in Lake is not invertible

 $f(a, b, c, d) = (a + (b \lor C_0)) + (c + (a \land C_1)) \gg 7) + ((b + (c \oplus d)) \gg 13)$ $g(a, b, c, d) = ((a + b) \gg 1) \oplus (c + d).$

Collision in 1 round

Since the function f is not invertible, we can find 2 message words m_k* and m_k such that for both messages the output of f is equal

$$\Delta f = (\Delta m_k \gg 7) + ((\Delta m_k \oplus C_i) \gg 13) = 0$$

Once, we have found a collision for f we have also a found collision for Lake reduced to 1 round

A Variant of Lake

If we use the same constant in each round then we can easily construct collisions for Lake.

h_0	243F6A88	85A308D3	13198A2E	03707344	A4093822	299F31D0	082EFA98	EC4E6C89
M_0	7901FB66	7120239A	75018D7B	38EFC240	04BA14F4	54B5A198	60842D9A	05CE0AF7
	1A31E11B	40B1C10C	55F91C02	559DF366	74D6D973	455E48F2	31072B72	4DB56283
M_0^*	7D11BC59	7120239A	75018D7B	38EFC240	04BA14F4	54B5A198	60842D9A	05CE0AF7
	1A31E11B	40B1C10C	55F91C02	559DF366	74D6D973	455E48F2	31072B72	4DB56283
ΔM_0	0410473F	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
h_1	289B5613	0295350F	CA661380	699C892A	80CC3678	91B6F85B	FD0332EB	D89C925A
h_1^*	289B5613	0295350F	CA661380	699C892A	80CC3678	91B6F85B	FD0332EB	D89C925A

The Lake hash function

A different constant is used in each round

Hence constructing a collision gets more complicated

$$\Delta f_3 = (\Delta m_3 \gg 7) + ((\Delta m_3 \oplus C_3) \gg 13) = 0$$

$$\Delta f_{10} = (\Delta m_3 \gg 7) + ((\Delta m_3 \oplus C_{10}) \gg 13) = 0$$

Collision for 3 rounds

Actual colliding message pair for 3 rounds of Lake

h_0	243F6A88	85A308D3	13198A2E	03707344	A4093822	299F31D0	082EFA98	EC4E6C89
M_0	2ED54018	259E7BED	6A7D12A0	12780007	57979D36	619A5DE1	2F1FA8A0	09D72979
	3428C041	1439951D	63537711	144840C4	7C75D35E	70C613E9	23DCA632	52DB6AB9
M_0^*	2ED54018	259E7BED	6A7D12A0	907FE827	57979D36	619A5DE1	2F1FA8A0	09D72979
	3428C041	1439951D	63537711	144840C4	7C75D35E	70C613E9	23DCA632	52DB6AB9
ΔM_0	00000000	00000000	00000000	8207E820	00000000	00000000	00000000	00000000
	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000
h_1	0969AF41	101EA7CE	CBF3F2FE	E47832EB	60FFD511	DA156A75	150B3A20	F003BA7E
h_1^*	0969AF41	101EA7CE	CBF3F2FE	E47832EB	60FFD511	DA156A75	150B3A20	F003BA7E

Extending the attack to more rounds

- Problem: We have to find collisions in f for 4 different constants
- We found only characteristics with very low probability
- Example:
 - $\bullet \Delta m_4 = -1$
 - probability 2⁻⁴⁷ for each round
 - 4 rounds => 2⁻¹⁸⁸
 - By using message modification this can be improved to 2⁻¹⁰⁹

Summary

- We show that the non-bijectiveness of the function f can be used to construct collisions for round reduced Lake
- We show a actual colliding message pair for 3 rounds of the hash function
- We present an attack on 4 rounds with a complexity of 2^{109.}
- We expect that the attack can be extended to 5 rounds by using advanced message modification techniques